NONCONVENTIONAL ENERGY ABSORPTION SYSTEMS

The works performed on energy absorption systems (EAS) as a concept of passive safety in vehicles have given rise to strong collaboration between international teams. In the PhD thesis by Mr Baleh (defended in 2004), a new experimental device called ACTP (Absorption by Compression-Torsion Plastic Deformation) was patented in 2005 (no. WO 2005090822) to improve the dissipative capacity of EAS. For aluminium, an increase of energy absorbance exceeding 180% was recorded in comparison to a uniaxial case. Thus, a collaboration with American teams was undertaken to interpret these increases and led to an article and an M.Sc. dissertation (USA). It led to a patent and the publication of 4 scientific articles and communications. Following the same path, the PhD thesis by Menouer (defended in April 2018) focused on the effect of triaxial loading on the energy absorbed by aluminium tubes with square cross sections. Original results were obtained (3 articles published and 3 communications).

The research works carried out by Mr AHMED ALI (PhD thesis not yet defended), are based on the idea of a patent registered in 2014 (INPI : No. BT 890/1400843), for nonconventional EAS using steel tubes treated thermically by the cementation of 15% of the external surface. Different shapes (rings, vertical strips and helixes) are key items in the study. These tubes have been tested under quasi-static and dynamic uniaxial compression. The results obtained are innovative. At present it has led to 1 article (with others in preparation) and 2 communications. Between 2017-2019, the aim of the PhD thesis of M. HABTE, funded by Cumpas France, was to produce a finite element model of these results. It was defended in December 2019. One article has been published (with others in preparation), and 4 communications have been given.

References:

Articles in peer-reviewed international journals & Patents

1) Abdul-Latif, A., 2000, “On the Lateral Collapse of an Identical Pair of Cylinders,” International journal of Solids and Structures, vol. 37, 1955-1973

2) Nesnas, K. and Abdul-Latif, A., 2001, “Lateral Plastic Collapse of Cylinders : Experiments and Modeling,” Computer Modeling in Engineering and Sciences, vol. 2, pp. 373-388

3) Abdul-Latif, A. and Nesnas, K., 2003, “Plastic Collapse of Cylinders under Constrained Sides and Length Conditions,” ASME, Engineering Materials and Technology, vol.125, 215-221

4) Abdul-Latif, A., 2004, “A Comparison of Two Self-Consistent Models to Predict the Cyclic Behavior of Polycrystals,” ASME, Engineering Materials and Technology, vol.126, 62-69

5) Abdul-Latif A., & Baleh R., 2005, "Dispositif amortisseur à organe déformable plastiquement, notamment pour véhicules de transport," PCT/FR05/00391- délivré à l’INPI et WO 2005090822- International.

6) Abdul-Latif, A., Baleh, R., and Aboura, Z., 2006, “Some improvements on the energy absorbed in axial plastic collapse of hollow cylinders,” International Journal of Solids and Structures, vol.43, 1543-1560

7) Baleh, R., and Abdul-Latif, A., 2007, “Uniaxial-biaxial transition in quasi-static plastic buckling used as an energy absorber,” ASME, Journal of Applied Mechanics, vol.74, pp. 628-635

8) Abdul-Latif, A. and Baleh, R., 2008, “Dynamic biaxial plastic buckling of circular shells,” ASME, Journal of Applied Mechanics, vol. 75, issue 3, 031013

9) Drusin, N., Mahapatra, R., Abdul-Latif, A., Baleh, R., Wilhelm, C., Stoyanov, P., and Es-Said, O.S., 2008, “Microstructure Analysis of Aluminum Alloy and Copper Alloy Circular Shells after Multiaxial Plastic Buckling,” ASM, Journal of Materials Engineering and Performance, vol. 17, pp.755–766

10) Abdul-Latif, A., 2011, “Experimental Comparison of Several Energy Absorbing Devices,” ASM, Journal of Materials Engineering and Performance, vol. 20, pp. 1392-1400

11) Abdul-Latif A., 2014, "Système d’absorption d’énergie à organe en composite métallique déformable plastiquement," No. BT 890/1400843-délivré à l’INPI, France

12) Menouer A., Baleh R., Djebbar A. and Abdul-Latif A., 2014, “New generation of energy dissipating systems based on biaxial buckling,” Journal of Thin-Walled Structures, vol. 85, pp. 456-465

13) Abdul-Latif A., Ahmed-Ali A., Baleh R., and Ould Ouali M., 2017, “Innovative solution for strength enhancement of metallic like-composite tubular structures axially crushed used as energy dissipating devices,” Journal of Thin-Walled Structures, 119, pp. 332–344

14) Baleh R., Abdul–Latif A., Menouer A., Razafindramary D., 2018, “New experimental investigation of non-conventional dynamic biaxial plastic buckling of square aluminum tubular structures,” International Journal of Impact Engineering, 122, pp. 333-345

15) Habte H. S., Abdul-Latif A., 2020, “Finite element modeling of non-conventional energy dissipating systems using metallic like-composite tubular structures,” International Journal of Impact Engineering, 139, 103511.

Thèses

1) Baleh R., 2004, "Flambage Plastique Quasi-statique et Dynamique de Structures Tubulaires Métalliques sous Sollicitations Simple et Complexe -Système d’absorption d’énergie- via un Nouveau Dispositif Expérimental," thèse, École doctorale de l’Université de Technologie de Troyes

2) Menouer A., 2018, “Effet de triaxialité du Chargement sur la Capacité Dissipatrice d’un Système d’Absorption d’Énergie Tubulaire,” Thèse en collaboration, Université de Tizi-Ouzou, Algérie

3) SAHLE HABTE H., 2019, “Finite element modeling of axially crushed metallic like-composite tubular structures under quasi-static and dynamic loading regimes used as energy dissipating devices,” Ecole doctorale, Université de Cergy-Pontoise

4) Abdellah AHMED ALI A., “Flambage plastique d’un système tubulaire en composite métallique comme système d’absorption d’énergie sous différentes vitesses de sollicitations quasi-statique et dynamique,” Université de Tizi-Ouzou, Algérie (thèse pas encore soutenue)

 Actes publiés de conférences internationales, congrès et colloques

1) Nesnas, K. and Abdul-Latif, A., 1997, “Modeling of Large Deformation of Cylinders under Transverse Loading,” Physics and Mechanics of Finite Plastic & Viscoplastic Deformation, pp. 435, ed. by Akhtar S. Khan, Neat Press (Maryland)

2) Abdul-Latif, A. and Nesnas, K., 1999, “On the Large Deformation of Cylinders with Constrained Sides Condition,” Constitutive and Damage Modeling of Inelastic Deformation and Phase Transformation, pp.685, Ed. by Akhter S. Khan, Neat Press (Maryland)

3) Abdul-Latif, A., 2002, “Comparative Study of Several Energy Dissipating Devices,” CSM3 3ème Congrès sur les matériaux, 16-18 Mai, Beyrouth (Liban).

4) Baleh, R., et Abdul-Latif, A., 2003, “Sur l’effet de rochet multiaxial,” CNRIUT 2003, 15-16 mai 2003, (Tarbes).

5) Baleh, R., Abdul-Latif, A., et Aboura, Z., 2003, “Grande déformation de structures tubulaires : systèmes d’absorption d’énergie,” CNRIUT 2003, 15-16 mai 2003, (Tarbes)

6) Baleh, R., Abdul-Latif, A., and Aboura, Z., 2003, “Plastic flow and its influence on the absorbed energy during the axial collapse of tubes,” Plasticity 2003, January 3-9, (Quebec)

7) Baleh, R., Abdul-Latif, A. et Aboura, Z., 2003, “Etude Expérimentale sur un Système d’Absorption d’Energie par Ecrasement Axial,” 16ème Congres Français de Mécanique, 1-5 Sept., Nice.

8) Baleh, R., Abdul-Latif, A., et Aboura, Z., 2005, “Comportement dynamique de tube écrasé axialement,” 17ème Congres Français de Mécanique, 29 août-2 Sept., Troyes.

9) Baleh, R., Abdul-Latif, A., et Aboura, Z., 2006, “Energy absorption improvement via sub-divided tubes under Uniaxial Dynamic loading,” Second International Conference on Engineering Failure Analysis (ICEFA II), 13 – 15 September 200, Toronto, (Canada)

10) Baleh, R., Aboura, Z., Abdul-Latif, A. et D., Razafindramary, 2007, “Ecoulement Plastique et Dissipation d’Energie sous Chargement Dynamique,” CNRIUT 2007, 31 mai-1er juin (Thionville-Yutz).

11) Abdul-Latif, A. and Baleh, R., 2008, “A new concept of dynamic biaxial plastic crushing of metallic thin-walled tubes,” 22th International Congress of Theoretical and Applied Mechanics (ICTAM2008), August 24–30 (Adelaide, Australia).

12) Abdul-Latif, A., et Baleh, R., 2010, “Sur le concept des systèmes d’absorption d’énergie et sa dernière innovation,” (Conférence Plénière), Les 7èmes Journées de Mécanique JM’EMP07, 12-13 Avril, (Alger).

13) Ishell, A., Abdul-Latif, A., Baleh, R., and Haboussi, M., 2011, “Dynamic biaxial plastic buckling of stainless-steel thin tubes,” COMPDYN 2011 3rd International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, 25-28 May 2011, Corfu (Greece)

14) Abdul-Latif, A. and Baleh, R., and Isheil, A., 2012, “Strain Rate and loading Complexity Effect on the Crushed Stainless-Steel Tubes Behavior,” 23rd International Congress of Theoretical and Applied Mechanics (ICTAM 2012), August 19 -24, 2012 (Pékin).

15) Lounis D., Baleh R., Menouer A., Abdul-Latif A., 2014, “New generation of energy dissipating systems based on biaxial buckling for improving vehicular crashworthiness”, Railways 2014, The Second International Conference on Railway Technology : Research, Development and Maintenance, 8-11 April 2014, Ajaccio (France)

16) Ahmed-Ali A., Baleh R., Razafindramary D., and Abdul-Latif A., 2015, “Effect of treated zone geometry on the dynamic plastic buckling of steel composite thin tubular structures,”International Conference on Dynamics of Composite Structures- DYNCOMP‟2015, 2nd to 4th June, Arles, France.

17) Abdul-Latif A., Ahmed-Ali A., Baleh R., Razafindramary D., 2016, “New concept of passive energy dissipating energy based on plastic buckling,” ICTAM 2016, 21-26 August 2016, Montreal, Canada

18) Baleh R., Menouer A., Razafindramary, D., and Abdul-Latif A., 2017, “Ecoulement énergétique sous flambage dynamique multiaxial,” CAM 2017, 26 -30 Novembre, Algérie (Constantine).

19) Haileleoul Sahle HABTE, Abdul–Latif A., 2019, “New numerical approach for enhancing non-conventional energy absorbing capacity of plastically buckled tubular structure,” ECHT-2019 Conference, 5-7 June 2019 Bardolino (Italy).

20) Habte H. S., and Abdul–Latif A., 2020, “Numerical Investigation of New Non-Conventional Energy Dissipating Systems and Their Applications,” Transport Research Conference (2020 TRB) Annual Meeting, January 12-16, (Washington, D.C.).

21) Abdul-Latif A., and Habte H.S., 2020, “New plastic buckling response of non-conventional tubular structures,” ICTAM 2020, 23-28 August 2020, Milano, Italy

22) Abdul-Latif A. and Habte H. S., 2020, “Plastic buckling resistance of non-conventional tubular structures,” Engineering Mechanics Institute Conference 2020 (EMI 2020) and the Probabilistic Mechanics & Reliability Conference 2020 (PMC 2020), 26-29 May, 2020 (New-York)